FeNi Confined in N-Doped Carbon as a Highly Efficient Bi-Functional Catalyst for Rechargeable Zn–Air Batteries

نویسندگان

چکیده

Rechargeable zinc–air batteries (RZABs) are basically dependent on both affordable and long-lasting bifunctional electrocatalysts. A non-precious metal catalyst, a FeNi nanoalloy catalyst (FeNi@NC) with an extremely low consumption (0.06 mmol), has been successfully synthesized. It shows high half-wave potential of 0.845 V vs. RHE for ORR overpotential 318 mV OER at 10 mA cm−2, favoring maximum power density 116 mW cm−2 the constructed RZABs. The voltage plateau is reserved even after 167 h cell operation. synergistic effect between nano-sized alloy nitrogen-doped carbon abundant N sites mainly contributes to electrocatalytic activity. This research can provide some useful guidelines development economic efficient catalysts

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

One-dimensional manganese-cobalt oxide nanofibres as bi-functional cathode catalysts for rechargeable metal-air batteries

Rechargeable metal-air batteries are considered a promising energy storage solution owing to their high theoretical energy density. The major obstacles to realising this technology include the slow kinetics of oxygen reduction and evolution on the cathode (air electrode) upon battery discharging and charging, respectively. Here, we report non-precious metal oxide catalysts based on spinel-type ...

متن کامل

Co3O4 Nanoparticle-Decorated N-Doped Mesoporous Carbon Nanofibers as an Efficient Catalyst for Oxygen Reduction Reaction

A low cost, durable, and efficient electrocatalyst for oxygen reduction reactions (ORR) is essential for high-performance fuel cells. Here, we fabricated Co3O4 nanoparticles (NPs) anchored on N-doped mesoporous carbon nanofibers (Co3O4/NMCF) by electrospinning combined with the simple heat treatment. Within this composite, carbon nanofibers possess a mesoporous structure, contributed to obtain ...

متن کامل

Nanostructured porous RuO2/MnO2 as a highly efficient catalyst for high-rate Li-O2 batteries.

Despite the recent advancements in Li-O(2) (or Li-air) batteries, great challenges still remain to realize high-rate, long-term cycling. In this work, a binder-free, nanostructured RuO(2)/MnO(2) catalytic cathode was designed to realize the operation of Li-O(2) batteries at high rates. At a current density as high as 3200 mA g(-1) (or ∼1.3 mA cm(-2)), the RuO(2)/MnO(2) catalyzed Li-O(2) batteri...

متن کامل

Magnetic Fe3O4 nanoparticles as a highly efficient catalyst for the synthesis of imidazoles under ultrasound irradiation

To be fairly general and catalyst is easily separated by magnetic devices and can be reused without any apparent loss of activity for the reaction. Fe3O4 nanoparticles were prepared by chemical coprecipitation method and was found to be a mild and effective catalyst for the efficient, one-pot, three-component synthesis of 2,4,5-trisubstituted imidazoles at room temperature under ultrasound irra...

متن کامل

Caesium carbonate as a highly efficient catalyst for the synthesis of macrocyclic diamides

In this research work, we report the synthesis of macrocyclic diamides from the reaction of diesters and aliphatic diamines in the presence of caesium carbonate. It has been demonstrated that among the carbonate of alkali metals (Li2CO3, Na2CO3, K2CO3 and CS2CO3), CS2CO3 appear to be the best catalyst for macrocyclization. Diesters with different substitution patterns on the aromatic ring react...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Inorganics (Basel)

سال: 2023

ISSN: ['2304-6740']

DOI: https://doi.org/10.3390/inorganics11070300